You Are Reading

The Science Of Rain

I felt that becoming more informed about the science and geology of rain may inspire some ideas for this brief as often the science behind how something works can encourage the development of more informed ideas.

precipitation in liquid form. It consists of drops of water falling from clouds; if the drops are very small, they are collectively termed drizzle. Rain plays a key role in the hydrologic, or water, cycle in which moisture from the oceans evaporates, condenses into clouds, precipitates back to earth, and eventually returns to the ocean via runoff into streams and rivers to begin the cycle again.

Formation of Raindrops
Clouds contain huge numbers of tiny droplets of moisture. Raindrops are formed when these tiny droplets are enlarged, first by moisture from the surrounding air condensing on them and then by coalescing with other droplets during their descent. Raindrops vary in size from about 0.02 in. (0.5 mm) to as much as 0.33 in. (8 mm) in thunderstorms. From the time they leave the bottom of the cloud, evaporation takes place and, if the cloud is high, the air warm and dry, and the raindrops small, so that they fall slowly, they may evaporate completely before they reach the earth. If they do so, the drops are called virga.

Measurement of Rainfall
There are thousands of stations throughout the world where rainfall observations and records are made. Included in such records is the fall of snow, reduced to its equivalent in rain. Rainfall is measured, in terms of inches or millimeters of depth, by means of a simple receptacle-and-gauge apparatus or by more complex electrical or weighing devices placed where eddies of air will not interfere with the normal fall of the raindrops. In addition to the daily, monthly, and annual totals, the depth of individual rainfalls and their intensity (amount of rain falling during a specific period of hours or minutes) and other pertinent facts are recorded.

Distribution of Rainfall
One of the primary elements in climate and a factor of tremendous importance in the distribution of plant and animal life, rainfall varies from less than an inch annually in a desert to more than 400 in. (1,000 cm) where the monsoons strike the Khasi hills in Assam, India, and on the windward slopes of Hawaiian mountains. In the United States the range is from less than 2 in. (5 cm) in Death Valley, Calif., to more than 100 in. (250 cm) on the coast of Washington state; in most of the country the average rainfall is between 15 and 45 in. (38 and 114 cm) annually.

Factors controlling the distribution of rainfall over the earth's surface are the belts of converging-ascending air flow (see doldrums;polar front), air temperature, moisture-bearing winds, ocean currents, distance inland from the coast, and mountain ranges. Ascending air is cooled by expansion, which results in the formation of clouds and the production of rain. Conversely, in the broad belts of descending air (see horse latitudes) are found the great desert regions of the earth, descending air being warmed by compression and consequently absorbing instead of releasing moisture. If the temperature is low, the air has a small moisture capacity and is able to produce little precipitation. When winds blow over the ocean, especially over areas of warm water (where evaporation of moisture into the air is active) toward a given coastal area, that area receives more rainfall than a similar area where the winds blow from the interior toward the oceans. Areas near the sea receive more rain than inland regions, since the winds constantly lose moisture and may be quite dry by the time they reach the interior of a continent.

The windward slopes of mountain ranges generally receive heavy rainfall; the leeward slopes receive almost no rain. The southwest coast of Chile, the west coast of Canada, and the northwest coast of the United States receive much rain because they are struck by the moisture-bearing westerlies from the Pacific and are backed by mountains that force the winds to rise and drop their moisture. The territories immediately east of the regions mentioned are notably dry. See weather.

Rain and Religion
The need for rain at a particular time and the dangers attendant upon drought brought rain prominently into the religion of most agricultural peoples. Rain-gods and thunder-gods are more prominent in many mythologies than sun-gods, and they have been propitiated in various ways in different cultures. The rain dances of the Native Americans may, however, be said to be generally typical of all in the elaborate symbolic gestures and patterns and in the extensive use of drums and rattles (presumably sympathetic magic by imitation of the sounds of thunder and showering rain). Because the purpose is to make the fields bear crops, the connection of such rites with those of fertility is obvious.

What causes the smell of rain?
Most people notice a distinctive smell in the air after it rains. It's frequently linked with spring, as the smell of fresh cut grass is associated with summer. You'll find it in a lot of poetry and also on many inspirational lists of things to be happy about. But what causes it?

As it turns out, the smells people associate with rainstorms can be caused by a number of things. One of the more pleasant rain smells, the one we often notice in the woods, is actually caused by bacteria!Actinomycetes, a type of filamentous bacteria, grow in soil when conditions are damp and warm. When the soil dries out, the bacteria produces spores in the soil. The wetness and force of rainfall kick these tiny spores up into the air where the moisture after a rain acts as an aerosol (just like an aerosol air freshener). The moist air easily carries the spores to us so we breathe them in. These spores have a distinctive, earthy smell we often associate with rainfall. The bacteria is extremely common and can be found in areas all over the world, which accounts for the universality of this sweet "after-the-rain" smell. Since the bacteria thrives in moist soil but releases the spores once the soil dries out, the smell is most acute after a rain that follows a dry spell, although you'll notice it to some degree after most rainstorms.

Another sort of smell is caused by the acidity of rain. Because of chemicals in the atmosphere, rainwater tends to be somewhat acidic, especially in urban environments. When it comes in contact with organic debris or chemicals on the ground, it can cause some particularly aromatic reactions. It breaks apart soil and releases minerals trapped inside, and it reacts with chemicals, such as gasoline, giving them a stronger smell. These reactions generally produce more unpleasant smells than bacteria spores, which is why the after-the-rain smell isn't always a good one. Like the smell caused by the bacteria spores, the smell of chemical reactions is most noticeable when it rains following a dry spell. This is because once the chemicals on the ground have been diluted by one downpour, they don't have the same reaction with the rainwater.

Another after-the-rain smell comes from volatile oils that plants and trees release. The oil then collects on surfaces such as rocks. The rain reacts with the oil on the rocks and carries it as a gas through the air. This scent is like the bacteria spores in that most people consider it a pleasant, fresh smell. It has even been bottled and sold for its aromatic qualities!

These are a few common rain smells, but there are also all sorts of other scents after it rains. There is lots of aromatic material that the moisture and impact of rain can stir up, and the moist atmosphere following a downpour is particularly good at carrying these particles through the air. So, when you talk about the after-the-rain smell with a friend, you may mean one thing while your friend is thinking of something else. You'll both agree, however, that the air has a much stronger aroma to it after a good rain.

Comments for this entry

Leave your comment


Copyright 2011 All rights reserved